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SUMMARY

A new zonal multi-domain Reynolds averaged numerical simulation=large-Eddy simulation (RANS=LES)
method is presented and assessed. The main occurring problem is the coupling at the domain interfaces
between a 1D or 2D, ensemble averaged solution computed with the RANS approach with the 3D,
�ltered, unsteady solution obtained using the LES approach. Both low- and high-normal velocity inter-
face cases are considered, resulting in a fully general approach. A coupling procedure well suited for
cell-centred �nite volume numerical method is proposed. Numerical tests are carried out for the plane
channel and the plane plate with a blunt trailing-edge con�gurations. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Direct numerical simulation of turbulent �ows is still far out of range for �ows of practical
industrial interest. In order to get an unsteady high-frequency representation of the solution,
large-Eddy simulation (LES) has been investigated by many authors (see Reference [1] for a
review). This technique, which is based on a low-pass �ltering of the exact solution of the
Navier–Stokes equations, makes it possible to obtain a signi�cant reduction in the complexity
of the simulation by reducing the number of degrees of freedom. But LES is still subject to
severe constraints when wall bounded �ows are considered, because (at least theoretically)
the internal region of the boundary layer needs to be quasi-directly resolved, yielding large
computational costs.
Because an accurate unsteady description of the solution is not needed everywhere when

dealing with practical engineering problems, the idea of using zonal approaches has emerged.
The idea is here to use LES in small localized subdomains where an accurate description of
the �ow is wanted, while computing the rest of the con�guration with a low-accuracy method.
The later method will be the Reynolds averaged numerical simulation (RANS) approach in
the present work.
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Previous authors have proposed hybrid RANS=LES approaches, but most of them are based
on the de�nition of a universal turbulence model, which is able to switch from LES to RANS.
Two recent examples are the detached Eddy simulation of Spalart [2] and the hybrid model of
Speziale [3]. The former was recently shown to yield not fully satisfactory results for attached
�ows [4], while no results based on the later have been published up to now.
The approach proposed in the present paper is based on a multi-domain=multi-resolution

decomposition of the problem. The full con�guration is decomposed into several subdomains,
which can be treated with either RANS or LES approach. The problem is now to de�ne
adequate interface conditions between RANS and LES subdomains. This problem is a fully
general multi-domain problem, which is a generalization of the LES multi-resolution=multi-
domain approach proposed by Qu�em�er�e et al. [5].
The paper is organized as follows. The theoretical framework associated to the problem is

introduced in Section 2. Corresponding governing equations and physical models are discussed
in Section 3. The RANS=LES interface problem and the proposed interface numerical treatment
are detailed in Section 4. Section 5 presents the main features of the numerical method. Two
test cases are then discussed: the subsonic plane channel �ow (Section 6), and the �ow past
a blunt trailing edge (Section 7). Conclusions and perspectives are presented in Section 8.

2. STATEMENT OF THE SCALE-SEPARATION PROBLEM

Both RANS and LES approaches rely on a scale-separation procedure. In the former case, it
is obtained via a statistical average, leading to

�(x; t)= 〈�(x; t)〉+ �′(x; t) (1)

where � is a space- and time-dependent dummy variable, and 〈:〉 denotes the ensemble average
operator de�ned as

〈�(x; t)〉= 1
N
∑
i=1; N

�i(x; t) (2)

where N is the total number of independent samples �i considered to perform the ensemble
average. Invoking the ergodic theorem, it is important to note that the dimension of the
averaged problem is lower than the one of the original problem for a large class of �ows: the
original problem involves four dimensions (three for space, one for time), while the dimension
of the averaged problem ranges from 0 to 4.
In the case of LES, scale separation is traditionally associated to the use of a spatial

convolution �lter, yielding

�(x; t)= ��(x; t) + �′′(x; t) (3)

with

��=
∫
G(x − �;�)�(�) d� (4)

where G is the kernel �lter function and � is the cut-o� lengthscale associated with the �lter.
For sake of simplicity we restrict ourself to a formal presentation, and the extension of the

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:903–925



ZONAL RANS=LES SIMULATIONS 905

convolution �lter to the non-homogeneous case (see References [1; 6; 7]) will not be detailed
here. It is important noting that all the developments presented below are fully general. The
dimension of the �ltered problem is the same as in the original problem: three dimensions
for space and one dimension for time.

3. GOVERNING EQUATIONS AND CLOSURES

3.1. Governing equations for resolved motion

We consider here the case of Newtonian compressible �uids. The �uid motion and
thermodynamic state is described by the compressible Navier–Stokes equations

@�
@t
+
@
@xj
(�uj) = 0

@(�ui)
@t

+
@
@xj
(�uiuj + p�ij − �ij) = 0; i=1; 2; 3

@(�E)
@t

+
@
@xj
(�Euj + puj − �ijui + qj) = 0

(5)

where u, p, and � are the velocity, the static pressure and the density, respectively. The gas
is assumed to be perfect

p=�RT (6)

where R is the perfect gas constant.
The total energy E, the viscous stress tensor � and the heat �ux q are expressed as

�ij = −2
3
�
@uj
@xj

�ij + �
(
@ui
@xj

+
@uj
@xi

)
�E = �e+

1
2
�uiui =

p
�− 1 +

1
2
�uiui

qi = −� @T
@xi

(7)

where e is the internal energy and �=Cp=Cv is the ratio of the speci�c heat set equal to
�=1:4. The molecular viscosity � and conductivity � are evaluated using the Sutherland law

�= �(T )=�0

√
T
T0
1 + C=T0
1 + C=T

�= �(T )=
�(T )Cp
Pr

where Pr is the number of Prandtl (set equal to 0.7), Cp the iso-pressure speci�c heat
coe�cient and T0, �0 and C are values of reference depending on the gaz.
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Applying one of the two-scale separation approaches described in the previous section
(noted here by a bare) to the Navier–Stokes equations, we get the evolution equations for the
resolved motion. These equations, which are formally equivalent, can be written as follows:

@ ��
@t
+
@
xj
( ��ũj) = 0 (8)

@( ��ũi)
@t

+
@
@xj
( ��ũiũj + �p�ij − �̃ij∗) = A1 + A2 (9)

@( ��Ẽ∗)
@t

+
@
@xj
( ��Ẽ∗ũj + �pũj − �̃ij∗ũi + q̃j∗) = B1 + · · ·+ B7 (10)

where the tilde symbol refers to mass-weighted variables

�̃=
��
��

(11)

The modi�ed total energy ��Ẽ∗ is de�ned as

��Ẽ∗= ��ẽ+
1
2
��ũi ũi=

�p
�− 1 +

1
2
��ũi ũi (12)

and the modi�ed viscous stress tensor �̃ij
∗ and the modi�ed heat �ux q̃i

∗ as

�ij∗ =−2
3
�(T̃ )

@ũj
@xj

�ij + �(T̃ )
(
@ũi
@xj

+
@ũj
@xi

)
(13)

qi∗ =−�(T̃ )@T̃
@xi

(14)

(15)

The state law associated to these new variables is

�p= ��RT̃ (16)

The unresolved terms appearing in the momentum and energy equations are de�ned as
follows:

A1 =− @
@xj
�̃(ũiuj − ũiũj) (17)

A2 =
@
@xj
(�ij − �̃ij∗) (18)

B1 =
@
@xj
(�euj − �e ũj) (19)
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B2 =

(
p
@ui
xi

− �p
@ũi
@xi

)
(20)

B3 =
@
@xj

��(ũiuj − ũiũj)ũi (21)

B4 = ��(ũiuj − ũiũj)@ũi@xj (22)

B5 =

(
�ij
@uj
@xi

− �ij @ũj@xi

)
(23)

B6 =
@
@xj
(�ij ũj − �̃ij∗ ũj) (24)

B7 =
@
@xj
(qj − q̃j∗) (25)

The speci�c closures associated to LES and RANS approaches are described in the following
sections.

3.2. LES closure

The subgrid models and underlying assumptions used in this study are the same than those
employed by Lenormand et al. [8; 9] for subsonic and supersonic �ows. This approach relies
on the previous works of Vreman [10]. Since there is nothing new dealing with that point,
we only brie�y recall the main features of the models.
Following Vreman’s conclusions [10], the A2, B5, B6 and B7 can be neglected. Considering

subgrid-viscosity-type models relying on the Boussinesq hypothesis, we get

A1 =
@	̃Lij
@xj

B3 =
@	̃Lij ũi
@xj

B4 = 	̃Lij
@ũi
@xj

B1 + B2 = − @
@xj

(
�Lt Cp
Prt

@T̃
@xj

)
(26)

where the subgrid Prandtl number Prt is set equal to 0.6 and where the deviatoric part 	̃L;Dij
of the subgrid-scale stress tensor 	̃Lij = ��(ũiuj − ũiũj) (with superscript L referring to as LES
approach) is modelled by

	̃L;Dij = 	̃Lij −
1
3
	̃Lkk�ij = − �Lt

(
@ũi
@xj

+
@ũj
@xi

)
(27)
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908 P. QU�EM�ER�E AND P. SAGAUT

The subgrid-scale viscosity �Lt is computed using the Selective Mixed-Scale Model [1; 8; 9; 11].
This model is given by a non-linear combination of the norm of the vorticity !̃, the charac-
teristic length scale � and the kinetic energy q̃c

1=2 of the highest resolved frequencies

�̃t =Cmf
0 (
) ��|!̃|1=2�3=2q̃c
1=2 (28)

with Cm=0:06 and f
0 the selective function. Introducing a test �lter denoted with a hat
( ̂̃ui= ũi−1=4 + ũi=2 + ũi+1=4) which can be interpreted as a second-order approximation of a
Gaussian �lter [9], the kinetic energy qc is evaluated by

q̃c
2 = 1

2 (ũi − ̂̃ui)(ũi − ̂̃ui)
3.3. RANS closure

As in the LES case, �uctuations of molecular viscosity and di�usivity are neglected. Only
the terms A1, B3 and the contribution of terms B1 + B2 are taking into account (the e�ects of
term B4 are small in regard to the other ones for the applications aimed).
As for LES, the RANS closure employed in the present study is based on the de�nition of

an Eddy-viscosity �Rt (superscript R referred to as RANS approach), yielding

	̃Rij = ��ũ′′i u′′j =
2
3
�Rt
@ũk
@xk

�ij − �Rt
(
@ũi
@xj

+
@ũj
@xi

)
+
2
3
�k�ij (29)

where �Rt remains to be de�ned, and k=
1
2 ũ

′′
i u′′i (with u

′′
i = ui − ũi) is the turbulent kinetic

energy. Unlike the LES modelling, the later variable is explicitly taking into account in the
RANS approach.
We use here the two-equation k–” model [12]

�Rt = C�f3
( ��k)2

���
(30)

where C�=0:09 is a constant, � is the turbulent dissipation and f3 a damping function to be
de�ned below. The two turbulent quantities k and � are computed by solving the following
additional equations:

@( ��k)
@t

+
@( ��kũi)
@xi

=− ��ũ′′i u′′j
@(ũi)
@xj

− @
@xi

[(
�+

�Rt
�k

)
@k
@xi

]
− ���

− 2�
(
@
√
k

@xi
@
√
k

@xi

)
(31)

@( ���)
@t

+
@ ���ũi
@xi

=−C�1f1
�
k
��ũ′′i u′′j

@(ũi)
@xj

− @
@xi

[(
�+

�Rt
��

)
@�
@xi

]
− C�2f2 ��

�2

k

+2��Rt

(
@2ũi
@n2i

)2
(32)
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with
�k =1; C�1 = 1:57; C�2 = 2; ��=1:3

and where n is the wall-normal unit vector and fi the following damping functions:

f1 = 1; f2 = [1− 0:3 exp(−R2t )]; f3 = exp

 −2:5(
1 +

Rt
50

)


Rt is the turbulent Reynolds number, de�ned as Rt = ��k=��.
The turbulent heat �ux appearing in the energy equation (@q̃tj =@xj=B1 + B2) is modelled

using a �rst gradient hypothesis, similarly to LES closure, yielding

q̃tj = − �Rt Cp
Prt

@T
@xj

(33)

where the turbulent Prandtl number Prt is taken equal to 0.9.

4. RANS=LES COUPLING AT THE SUBDOMAIN INTERFACE

4.1. Theoretical presentation of the problem

For sake of simplicity, and without loss of generality, the theoretical presentation of the
problem is carried out in the case of the interface of two subdomains. A RANS simulation
is carried out in the �rst one, referred to as �1, while a LES simulation is performed in
the second subdomain, �2. The interface between the two subdomains is noted 	12. Data
associated to the lth subdomain will be noted with the superscript (l).
The di�erence in the scale-separation operator selected in each subdomain leads to a

discontinuity of the solution at the interface 	12

�u(1)(x; t) �= �u(2)(x; t) on 	12 (34)

preventing the use of classical conservative treatments of the interface. This can be seen
as a generalization of the discontinuous interface condition derived for multi-domain=multi-
resolution LES=LES simulations developed by Qu�em�er�e et al. [5]. This decomposition is also
formally equivalent to the one introduced by Labourasse et al. [13] to handle the problem of
the reconstruction of turbulent �uctuations around a RANS solution.
It is important noting that the interface treatment is intrinsically based on the numeri-

cal method used to solve the governing equations. We present below an interface condition
adapted to the RANS=LES multi-domain problem within the framework of �nite-volume, cell-
centred numerical methods. In the present approach, boundary conditions for each subdomain
are prescribed by de�ning the values of the unknowns in rows of ghost cells associated to
each domain and overlapping the other one.
We now introduce the interface variable w12, de�ned as the di�erence between the two

�elds on the interface

w12 = �u(2)(x; t)− �u(1)(x; t) on 	12 (35)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:903–925
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The basic interface problem is the following:

• Boundary conditions for the RANS subdomain: evaluate �u(1)(x; t) from �u(2)(x; t) in
the ghost cells, and �nd the values of turbulence-model related variables (k; �). This
corresponds to removing the interface variable w12 from the LES �eld �u(2)(x; t) in the
RANS subdomain ghost cells. This will be symbolically noted as

�u(1)(x; t)=R[ �u(2)(x; t)]; k=Rk[ �u(2)(x; t)]; �=R�[ �u(2)(x; t)] (36)

where R will be referred to as the restriction operator.
• Boundary conditions for the LES subdomain: evaluate �u(2)(x; t) from �u(1)(x; t) in the
ghost cells and de�ne the subgrid-scale viscosity (�Lt ). This is equivalent to the prob-
lem of computing w12 in these cells, and corresponds to the reconstruction of the
high-frequency �uctuations at the interface. This will be noted

�u(2)(x; t)=E[ �u(1)(x; t)] or w12 =E[ �u(1)(x; t); �u(2)(x; t)]; �Lt =E� t [ �u
(1)(x; t)] (37)

where E will be called the enrichment operator.

4.2. Boundary conditions for the RANS subdomain

Values of �u(1)(x; t) in the ghost cells are easily obtained by applying the ensemble average
operator to the LES �eld �u(2)(x; t), yielding

�u(1)(x; t)=R[ �u(2)(x; t)]≡〈 �u(2)(x; t)〉 in ghost cells (38)

In practice, the ensemble average can be associated to (i) an ensemble average per-
formed using several statistically equivalent simulations, as for Carati’s ensemble-averaged
LES [14; 15], (ii) an average over homogeneous space directions, (iii) an average in time, or
any combinations of these three possibilities. The most general one is the �rst one, but it is
also the most expensive. In the present paper, the second solution is used.
Evaluating k and � is a more di�cult task. Numerical experiments have shown that a direct

reconstruction of these variables in the ghost cells using the LES �eld yields poor results
because they are very sensitive to the restriction operator, the number of samples available to
perform the ensemble average being generally to low to ensure a good evaluation of �.
A robust and e�cient method is to compute k and � using Equations (31) and (32) with

〈 �u(2)(x; t)〉 quantities as a mean velocity �eld everywhere in the LES subdomain �2. It is
important noting that here k and � have no feedback on the LES �eld �u(2)(x; t) in the interior
of the �2 subdomain, and can be seen as two-coupled passive scalars within this domain. This
allows the de�nition of turbulent variables which account for memory e�ects and the structure
of the �eld at the interface, with a weak dependency on the implementation of the ensemble
average operator. A drawback of this boundary conditions for the turbulent variables is that
the total turbulent kinetic energy, de�ned as the sum of the resolved and the modelled parts,
is not continuous at the interface. The two reasons for that are: (i) a Dirichlet conditions is
not used and (ii) the exact total turbulent kinetic energy is theoretically continuous at the
interface, but the use of RANS and LES models do not ensure this conservation properties.
It is worth noting the subgrid models used in this study belong to the functional type (see
Reference [1] for a detailed discussion) and do not represent accurately the subgrid stresses
and the subgrid kinetic energy.
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4.3. Boundary conditions for the LES subdomain

It was said in Section 4.1 that the problem of the de�nition of the LES �eld in the ghost
cells which overlap the RANS subdomains is equivalent to evaluating the interface variable
in these cells. Because the ensemble average can be mathematically interpreted as a projector,
information related to the �uctuations in this subdomain is lost and cannot be reconstructed
from the RANS �eld �u(1)(x; t) alone.
The distinction will be made here between out�ow and in�ow subdomain interfaces.
Out�ow interfaces: correspond to interfaces where the �ow is directed from the LES

subdomain toward the RANS subdomain. In this case, the quantity w12 is extrapolated from
the LES subdomain in the following way:

1. Compute 〈 �u(2)(x; t)〉 in LES subdomain in rows of cells located just in front of the inter-
face, using the same restriction operator as for the RANS subdomain interface condition.

2. Evaluate the interface variable w12 in these cells as follows:

w12 = �u(2)(x; t)− 〈 �u(2)(x; t)〉 in �2

3. Extrapolate w12 in the ghost cells, yielding the extrapolated w∗
12. In the present work,

a weighted �rst-order accurate extrapolation is used. In the one-dimensional case, it is
written as follows:

w∗
12 =w12(x0 +

1
2 �x; t)=Cextraw12(x0 − 1

2 �x; t) (39)

where x0 is the position of the interface, �x the size of the cell in the direction normal to
the interface and Cextra the weighting factor. Numerical experiments have shown that the
use of a second-order accurate extrapolation yield numerical instabilities. The weighting
factor is introduced to account for the variation of the resolved �uctuating kinetic energy.
Two factors are responsible for this variation:

(a) The grid resolution variation between the last interior cell in �2 and the ghost cells,
which is associated to a cut-o� lengthscale variation in the LES �lter.

(b) The physical variation of the �uctuating energy pro�le associated to the fact that this
quantity may evolve from one space location to another one. The di�erence between
the location of the ghost cells and the interior cells must then be accounted for. It
was taken into account by Nicoud et al. [16] on the basis of a priori knowledge of
the velocity scaling in the incompressible channel �ow.

This variation makes it necessary to rescale the variable w12, in order to have the proper
kinetic energy.
The second factor is essentially �ow dependent, while the �rst one is mesh dependent.
For the present simulation the value for Cextra has been de�ned empirically as the ratio
of the characteristic lengthscales, evaluated from the volume V of the cells

Cextra =
�12

��
=
(
V12
V�

)1=3
(40)

where subscripts 12 and � are related to the ghost cell and the �rst interior cell,
respectively.
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912 P. QU�EM�ER�E AND P. SAGAUT

4. Reconstruct the total LES �eld in the ghost cells

�u(2)(x; t)= �u(1)(x; t) + w∗
12 in ghost cells (41)

It is worth noting that the problem of the reconstruction of the subgrid-scale viscosity �Lt in
the ghost cells is close to the one of the de�nition of hybrid RANS=LES problem. Speziale [3]
proposed to rescale the RANS Eddy-viscosity by using the following relationships:

	Lij =[1− exp(−
�=LK)]n	Rij
where LK designates the Kolmogorov length scale and 
 and n are coe�cients to be adjusted.
This last formulae appears to be not well suited to deal with problems having di�erent dimen-
sions at the interface. In order to recover a 3D subgrid-scale viscosity for the LES subdomains
we propose simply here to extrapolate the viscosity from the inner cells to the ghost cells.
In�ow interfaces: are the most di�cult case, because the information is now convected

from the RANS subdomain toward the LES subdomain. This problem is very similar to the
problem of the de�nition of turbulent in�ow conditions for LES. It is now recognized that the
de�nition of rough boundary conditions, which do not account for the two-point and two-time
correlations of turbulent �uctuations can have deleterious e�ects [17].
The distinction will be made here between the low- and high-normal velocity in�ow in-

terfaces. We de�ne here low-normal velocity (resp. high-normal velocity) interfaces as inter-
faces for which the numerical advection lengthscale Lc = un�t (where �t is the time step
and un= �u(1) · n the in�ow-normal velocity component, n being the inward-normal vector) of
the information across the interface is small (resp. high) with respect to the characteristic
lengthscale L of turbulent �uctuations near the interface.
For low-normal velocity interfaces, the �uctuations remain strongly correlated in space, and

w12 can be extrapolated from the LES subdomain. The numerical treatment is then exactly
the same as for out�ow interfaces.
For high-normal velocity interfaces, turbulent �uctuations will be decorrelated in space

near the interface, and the extrapolation technique can no longer be used. Several ways to
reconstruct w12 have been assessed in this study, relying on the use of analytical deterministic
de�nitions of the �uctuations or based on a long-range extrapolation technique, similar to the
rescaling technique of Lund [18] for turbulent in�ow conditions. The best results, presented
here, have been obtained by simulating a plane channel �ow, independently of the present
calculation. At each time step, the complement w12 is extracted, rescaled and used to de�ne the
in�ow condition. This method, which is the most accurate one, induces the extra computational
cost associated with the auxiliary LES computation. But is remains bene�cial because the
secondary computation is carried out on very simple time-developing �ows, and the total cost
remains much lower than those of full LES on the con�guration. This point will be illustrated
in Section 7.

5. NUMERICAL METHOD

The basic numerical method is exactly the same as the one described in References [5; 19; 20].
It is based on a second-order accurate �nite volume, cell-centred discretization of the com-
pressible Navier–Stokes equations. The skew-symmetric form and a centred non-dissipative
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scheme are used for the convection term. Spatial derivatives (temperature gradients, velocity
gradients) present in di�usive �uxes are computed using staggered cells to evaluate gradients
in order to ensure the coupling between odd and even cells, preventing spurious wiggles. Time
integration is performed using a third-order three-stage compact Runge–Kutta time-stepping
scheme.
For plane channel �ow computations, the same forcing term as in References [8; 9] is used.

6. APPLICATION TO THE PLANE CHANNEL FLOW

The multi-domain=multi-resolution technique has �rst been assessed on a subsonic plane chan-
nel �ow. The interface has been taken parallel to the solid wall, corresponding to out�ow or
low-normal velocity boundary condition for the LES subdomain, and to in�ow and out�ow
boundary for the RANS subdomain. It is then a relevant test case to validate the associated
treatment based on the extrapolation of the �uctuation w12.

6.1. Physical problem and computational parameters

The selected con�guration is the isothermal-wall plane channel �ow (Figure 1). Periodic
boundary conditions are used in the streamwise (x) and spanwise (y) directions. For notational
convenience, all bar and tilde symbols associated previously to the resolved variables in the
equations are left out. The restriction operator R is de�ned as the ensemble average over
homogeneous direction (x; y). Statistical moments of the solution are computed by performing
a statistical average in time and over the same homogeneous directions.
The size of the computational domain (Lx, Ly and Lz in the streamwise, spanwise and

wall-normal direction, respectively) was chosen such that the two-point correlations in the
streamwise and spanwise directions would be essentially zero at the maximum separation
(half the domain size).
In the present work, all the computations have been performed with CFL number equal to

0.95. This small value makes it possible to assume that the time-�ltering e�ects due to the use
of �nite time steps will be masked by the implicit space-�ltering operation. Uniform mesh
spacing is used in homogeneous direction, while a stretched grid following an hyperbolic
tangent law distribution is used in the wall-normal direction.

Ly

x

y
z

Lz

Lx

Figure 1. Plane channel con�guration.
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RANS

LES

LES

Figure 2. LES=RANS=LES con�guration.

RANS

LES

RANS

Figure 3. RANS=LES=RANS con�guration.

Two con�gurations have been investigated:

• Near-wall LES: the internal boundary-layer region is resolved using LES, while the
central part of the channel is described using RANS (Figure 2). That allows a �ne
description of the near-wall turbulent �uctuations, while ignoring the rest of the �ow.
This kind of description, which is required for some studies related to aeroacoustics
and prediction of aero-optical e�ects, was the original purpose of the present work. For
such applied studies, small LES subdomains embedded within a global RANS computa-
tions are used to get an accurate unsteady description of turbulent �uctuations in some
near-wall regions.

• Near-wall RANS: the near-wall region is resolved using RANS, while the external
boundary-layer region is resolved with LES (Figure 3). The RANS approach appears
here like a wall model for LES. These computations can then be related to the DES ap-
proach [2; 4], or to the two-layer computations of Balaras et al. [21] and Cabot [22; 23].

6.2. Near-wall LES treatment

The tests presented in this section have been carried out using essentially a three-subdomain
decomposition: one LES subdomain near each wall, and one RANS subdomain in the core
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Table I. Computational parameters for monodomain reference RANS and LES simulations.

Case Re	 (target) Lx Ly Lz Nx×Ny×Nz �+
x �+

y �+
zw −�+

zc

A1L (LES) 590 2� � 2 55×121×129 68 15 1–21

A1R (RANS) 590 — — 2 1×1×129 — — 1–21

B1L (LES) 1050 2:5� �=2 2 83×83×65 100 20 1–50

B1R (RANS) 1050 — — 2 1×1×65 — — 1–50

Table II. Computational parameters for multi-domain RANS=LES simulations. The two or three values
of Nz correspond to the number of grid point in the wall-normal direction in each subdomain.

Con�guration Case Re	 (target) Nz z+	 Cextra

LES=RANS A2 590 65=65 590 1.000
LES=RANS=LES A3 590 32=67=32 95 0.981
LES=RANS=LES A3+ 590 38=55=38 150 0.983
LES=RANS=LES A3++ 590 51=29=51 320 0.989
LES=RANS=LES B3 1050 16=35=16 100 0.943

RANS=LES=RANS A3RLR 590 38=55=38 150 0.95
RANS=LES=RANS A3RLR+ 590 45=41=45 225 0.95

region of the channel. Classical RANS and LES monodomain computations have also been
performed in order to have some reference data.
Two targeted skin-friction Reynolds numbers have been considered: Re	=590 and Re	

=1050, where Re	 is de�ned as Re	=
√
�w Re(@〈u〉=@z)w. The Mach number M0, de�ned

from the bulk velocity ub and the mean sound velocity at the wall as M0 = ub=aw is set equal
to 0.5.
Computational parameters for all the simulations are presented in Tables I and II. The size

of the domain is the same for the monodomain and the multi-domain computations at the
same Reynolds number. For multi-domain simulations, z+	 is related to the distance between
the wall and the interface, expressed in wall units. It is worth noting that in all cases the LES
zone is large enough to capture the turbulent near-wall autonomous cycle [24; 25]. Thus, the
production of turbulent �uctuations is ensured.
The computed mean values are summarized in Table III. A good agreement between ref-

erence monodomain and multi-domain computation is observed. It is seen that the friction
Reynolds number is recovered within a 2% error level, which is a very satisfactory result.
For the high-Reynolds number case, the multi-domain is seen to yields better results than the
classical LES calculation.
Computed mean velocity pro�les and resolved Reynolds stresses are compared with those

obtained using an usual LES approach in Figures 4–7. The agreement obtained with the
theoretical mean velocity pro�le is very satisfactory, and it is observed that the hybrid com-
putations yield results which are very close to the LES results. The observed discrepancies
at the highest Reynolds number are usual in LES computations with a second-order accurate
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Table III. Computed mean values: friction Reynolds number Re	, friction velocity u	,
centreline velocity Uc, centreline temperature Tc, wall density �w.

Case Re	 u	∗102 Uc Tc �w

A1L 593 5.20 1.10 1.045 1.044
A1R 595 5.23 1.13 1.039 1.040

A3 597 5.24 1.10 1.0445 1.042
A3+ 604 5.30 1.095 1.045 1.044
A3++ 590 5.17 1.10 1.045 1.044

B1L 986 4.45 1.010 1.051 1.05
B1R 1110 5.05 1.123 1.033 1.045

B3 1020 4.63 1.089 1.050 1.048

z+

<
u>

/u
t

100 101 102
0

5

10

15

20

25

Γ

Figure 4. Mean velocity pro�les at Re	=590: A1L: solid line; A1R: dashed line; A3: circle.

numerical method and the present grid resolution. The agreement between classical LES and
the hybrid RANS=LES computations on the resolved Reynolds stresses is very good. The
observed di�erences occurring near the interface are localized in a 4–5 point wide layer near
the interface, and they are seen to not pollute the rest of the computation. The �uctuations
observed in the RANS region are due to the unsteady character of the 1D RANS computation
in that subdomain.
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Figure 5. Mean velocity pro�les at Re	=1050: B1L: solid line; B1R: dashed line;
B3: circle; theoretical pro�les: dotted line.
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Figure 6. Streamwise, spanwise and wall-normal rms velocity �uctuations normalized with the skin
friction at Re	=590: A1L: solid line; A3: line and circle.

The e�ect of the enrichment procedure is seen in Figure 8, where one-dimensional en-
ergy spectra near the interface are shown, and compared with those obtained in classical
monodomain LES and hybrid RANS=LES without enrichment. The agreement obtained when
using the enrichment procedure at the RANS=LES interface is very satisfactory, giving a new
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Figure 7. Streamwise, spanwise and wall-normal rms velocity �uctuations normalized with the skin
friction at Re	=1050: B1L: solid line; B3: line-circle.
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Figure 8. One-dimensional energy spectra close to the interface in the LES domain
at Re	=590 (plane z+ =95): Etotal (a), Eu (b), Ev (c), Ew (d). A1: solid line, A3:

line-symbol, A3 (Cextra = 0): dashed line.
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Plate 1. Streamwise velocity: (Top) RANS=LES approach; (middle) RANS=LES approach
(spanwise-averaged value); (bottom) RANS calculation.
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(top), in the wake at X=H = + 4 (bottom).
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Figure 9. E�ect of the enrichment procedure on the evolution of the
friction Reynolds number (case A3).
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Figure 10. Resolved turbulent kinetic energy at Re	=590. A1L: circle; A3: solid line;
A3+: dashed line; A3++: dotted line; A2: triangle.

validation of the method. Moreover, it is worth noting that without enrichment, as encoun-
tered for energy level close to the interface, the friction Reynolds number decreases strongly
(Figure 9). This demonstrates the necessity to proceed to such a reconstruction.
The sensitivity of the method to the position of the interface is then investigated. The

resolved kinetic energy pro�les obtained for three di�erent positions at Re	=590 are presented
in Figure 10. A good general agreement is obtained with classical LES. It is also observed
that some di�erences appear in the centre of the channel, as the cut-o� is moved toward the
centreline of the channel. Careful tests have demonstrated that this is due to a less satisfactory
behaviour of the 1D RANS computation in the central subdomain, which is due to the fact
that both its extent and its resolution are diminishing, yielding stronger �uctuation levels. But,
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Figure 11. Mean velocity pro�les: A3RLR: solid line; A3RLR+: dashed line; A1L: circle; A1R: square.

in all the cases, the RANS=LES coupling procedure remains e�cient. A proof is the very good
agreement between the classical LES computation and the A2 case, in which one-half of the
channel is computed with LES, while the other part is computed by RANS.

6.3. Near-wall RANS treatment

We now present the results obtained when using the RANS approach for the near-wall region.
Two cases have been considered, which correspond to di�erent position of the interface (all
computational parameters are given in Table II).
Computed mean velocity pro�les are compared to classical LES and RANS computations

in Figure 11. The observed perfect agreement between RANS and hybrid computations (in
the RANS subdomains) shows that the near-wall behaviour in the hybrid computation is
governed by the RANS model, and seems to be insensitive to the coupling procedure. In
the LES subdomain, a very good agreement is recovered with all the other computations,
demonstrating the e�ciency of the interface condition.
Resolved Reynolds stresses are compared to results of usual LES in Figure 12. A very

good agreement is obtained in the case where the interface is located at z+ =150, while
more pronounced discrepancies near the interface are observed in the second case (z+ =225).
This is explained by two facts: (i) in the second case the mesh size near the interface is
greater, yielding higher extrapolation error in the ghost cells and, (ii) the mesh size near the
interface being larger, it does not allow a very accurate description of turbulent �uctuation
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Figure 12. Streamwise, spanwise and wall-normal rms velocity �uctuations normalized with the skin
friction at Re	=590: A3RLR: solid line; A3RLR+: dashed line; A1L: circle.

in this region, reducing the e�ciency of the coupling procedure. But it is worth noting that,
even in the second case, the results are at least as good as those obtained by other authors
with other hybrid RANS=LES procedures. Two interesting remarks are that (i) no spurious
boundary layer develops at the interface, as it is sometimes seen with wall stress models and
(ii) turbulent �uctuations are maintained in the core of the channel, despite the near-wall
production events are not captured in the LES regions. In both cases, the reconstruction of
turbulent �uctuations at the interface seems to be a key point of the present method [26].

7. APPLICATION TO THE FLOW PAST A BLUNT TRAILING EDGE

7.1. Domain decomposition and computational parameters

The last con�guration is the subsonic �ow around a �at plate with a blunt trailing edge. The
purpose is here to predict accurately the vortex shedding near the trailing edge in a very
small subdomain, which is representative of the location of acoustic sources in that �ow (see
Reference [27] for a classical LES treatment of this �ow). This con�guration involves high-
normal velocity in�ow interface for the LES subdomain, and will then make it possible to
analyse the proposed coupling procedure.
The Reynolds number Re∞=U∞L=�, where U∞ is the external reference velocity and L

the length of the plate, is taken equal to 2:106. The reference Mach number is equal to 0.5.
The thickness H of the plate is taken equal to L=2300, which is representative of what is
encountered on realistic wing pro�les. The corresponding values in wall units are L+ =66 000
and H+ =29, based on the friction velocity computed just near the separation point with a
RANS computation (the friction Reynolds number at this point is equal to 436).
The subdomain decompositions is displayed on Figure 13. A view of the mesh near the

trailing edge is presented in Figure 14. Geometrical parameters associated to this case (ex-
pressed in wall units) are summarized in Table IV. The distance between the trailing edge
and the upstream (respectively, downstream) in�ow interface of the LES subdomains in the
streamwise (x) direction is referred to as X 2+ (X 3+). The distance of the horizontal LES
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Figure 13. Blunted trailing-edge con�guration.
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Figure 14. View of the mesh near the trailing edge.
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Table IV. Geometrical parameters for the LES-subdomains de�nition
for blunt trailing-edge computations.

X 2+ X 3+ Z2+|w L+y �x+ �y+ �z+|w
−968 156 95 327.7 2.6–64 11.7 1.3

subdomain to the �at plate is noted Z2+|w. The spanwise extent of the LES subdomains is L+y
(it is recalled that the RANS subdomain are 2D and have a null spanwise extent). The size
of the �rst mesh near the separation point is also given. For the LES subdomains, a uniform
mesh spacing is used in the wake region, while a stretched grid is employed upstream the
trailing edge. The mesh is stretched in the wall-normal direction, and uniform in the spanwise
direction.
The total number of grid points is nearly equal to 360 000, the LES part corresponding

approximatively to 270 000 points. The total number of subdomains is 14 (10 RANS sub-
domains, 3 LES subdomains and one additional domain for the independant channel plane
�ow simulation), leading to the de�nition of approximatively 100 interfaces, with 7 interfaces
corresponding to RANS=LES coupling.

7.2. High-normal velocity in�ow interface treatment

As said in Section 4.2, a speci�c way to reconstruct w12 at the LES subdomain interface
located at x=X 2 has been de�ned, which is now described.
The reconstruction relies on the use of a secondary LES of plane channel �ow, in order

to have a realistic �uctuation pro�le. The instantaneous �uctuations around the mean pro�le
in the channel �ow at a given streamwise position are extracted, rescaled in wall units, and
used as the w12 �eld at the RANS=LES interface. This procedure was used at each time step
of the blunted �at-plate �ow simulation.

7.3. Results

Some instantaneous �ow �elds are displayed in Plates 1 and 2. Plate 1 presents three di�erent
instantaneous streamwise velocity components in a (x–z) plane: the velocity extracted from
a single plane from the LES subdomains and the velocity in the RANS subdomains, the
spanwise-averaged velocity in the LES subdomains and the velocity in the RANS subdomains,
and the velocity obtained carrying out a 2D unsteady RANS computation. Plate 2 displays
instantaneous views of the streamwise vorticity component in two (y–z) planes in the LES
subdomains. The �rst one is located upstream the trailing edge, while the second is located
in the wake region.
A fully 3D behaviour in the LES subdomains is observed, thanks to the use of the enrich-

ment procedure at the in�ow interface of the LES region. Classical structures associated to
near-wall turbulence are present. An interesting feature of the simulation is the discontinuity
of the velocity �eld at the RANS=LES interface. That discontinuity is seen to vanish when the
spanwise-averaged velocity �eld is considered in the LES subdomain instead of the 3D �eld,
in agreement with the fact that this direction is assumed to be an homogeneous direction for
this �ow.
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The vortex shedding mechanism is characterized by the main value of the Strouhal number
St. The computed values are St=0:55 and 0.59 for the 2D RANS and the hybrid RANS=LES
computations, respectively, yielding to a good agreement. It is worth noting this value is
sensitive to the enrichment procedure: numerical simulation without enrichment at the RANS=
LES interface yields St=0:85, because turbulence e�ect are missing.
In a general way, no deleterious e�ects (such as spurious wiggles or re�ecting waves from

out�ow RANS=LES interface) are detected. Thus, at least on a qualitative point of view,
these results demonstrate the ability of the multi-domain=multi-resolution method to deal with
problems on complex geometries.

8. CONCLUSIONS

A new zonal RANS=LES computational technique is proposed. It is based on the use of
a subdomain decomposition, each domain being treated using one of these two approaches.
Theoretical analysis reveals that the solution is discontinuous at the RANS=LES interface, and
that even the dimension of the solution can vary. As a consequence, the RANS=LES coupling
strategy appears as a generalized multi-domain problem. The proposed treatment is based
on the de�nition of an interface variable, which is extrapolated from the LES subdomain or
extracted from an auxiliary computation, depending on the type of interface.
The proposed procedure was successfully assessed on the plane channel con�guration and

on the �ow past a blunt trailing edge. Both mean velocity and resolved Reynolds stresses
pro�les are recovered, demonstrating the e�ciency of the method.
For interfaces referred to as low-normal velocity interfaces, the extrapolation of the w12

�eld from the LES subdomain seems to be adequate. For high-normal velocity interfaces,
good results were obtained using �uctuations extracted from an auxiliary LES.
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